Exponential function — The natural exponential function y = ex In mathematics, the exponential function is the function ex, where e is the number (approximately 2.718281828) such that the function ex is its own derivative … Wikipedia
Exponential map — In differential geometry, the exponential map is a generalization of the ordinary exponential function of mathematical analysis to all differentiable manifolds with an affine connection. Two important special cases of this are the exponential map … Wikipedia
Exponential distribution — Not to be confused with the exponential families of probability distributions. Exponential Probability density function Cumulative distribution function para … Wikipedia
Exponential family — Not to be confused with the exponential distribution. Natural parameter links here. For the usage of this term in differential geometry, see differential geometry of curves. In probability and statistics, an exponential family is an important… … Wikipedia
Theorem — The Pythagorean theorem has at least 370 known proofs[1] In mathematics, a theorem is a statement that has been proven on the basis of previously established statements, such as other theorems, and previously accepted statements … Wikipedia
Exponential sum — In mathematics, an exponential sum may be a finite Fourier series (i.e. a trigonometric polynomial), or other finite sum formed using the exponential function, usually expressed by means of the function:e(x) = exp(2pi ix).Therefore a typical… … Wikipedia
Exponential hierarchy — In computational complexity theory, the exponential hierarchy is a hierarchy of complexity classes, starting with EXP:: m{EXP} = igcup {kinmathbb{N mbox{DTIME}left(2^{n^k} ight)and continuing with: m{2EXP} = igcup {kinmathbb{N… … Wikipedia
Nachbin's theorem — Exponential type redirects here. For exponential types in type theory and programming languages, see Function type. In mathematics, in the area of complex analysis, Nachbin s theorem (named after Leopoldo Nachbin) is commonly used to establish a… … Wikipedia
Hilbert's theorem (differential geometry) — In differential geometry, Hilbert s theorem (1901) states that there exists no complete regular surface S of constant negative Gaussian curvature K immersed in mathbb{R}^{3}. This theorem answers the question for the negative case of which… … Wikipedia
Ultra exponential function — Articleissues OR=January 2008 other=This article uses nonstandard notations, which are confusing and superfluous.In mathematics the ultra exponential function is a special case of the iterated exponential function more commonly known as tetration … Wikipedia